首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6591篇
  免费   858篇
  国内免费   806篇
化学   3375篇
晶体学   110篇
力学   1458篇
综合类   44篇
数学   734篇
物理学   2534篇
  2023年   113篇
  2022年   164篇
  2021年   175篇
  2020年   217篇
  2019年   217篇
  2018年   196篇
  2017年   212篇
  2016年   257篇
  2015年   217篇
  2014年   321篇
  2013年   558篇
  2012年   413篇
  2011年   420篇
  2010年   342篇
  2009年   440篇
  2008年   391篇
  2007年   446篇
  2006年   380篇
  2005年   330篇
  2004年   310篇
  2003年   255篇
  2002年   212篇
  2001年   197篇
  2000年   164篇
  1999年   136篇
  1998年   129篇
  1997年   114篇
  1996年   136篇
  1995年   111篇
  1994年   81篇
  1993年   89篇
  1992年   76篇
  1991年   69篇
  1990年   52篇
  1989年   44篇
  1988年   43篇
  1987年   42篇
  1986年   32篇
  1985年   23篇
  1984年   17篇
  1983年   11篇
  1982年   17篇
  1981年   20篇
  1980年   17篇
  1979年   13篇
  1978年   5篇
  1975年   4篇
  1974年   3篇
  1973年   6篇
  1971年   4篇
排序方式: 共有8255条查询结果,搜索用时 15 毫秒
71.
生物分子与纳米材料作用形成的“蛋白冠”影响纳米材料的物理和化学性质, 目前缺少有效的原位实时技术监测蛋白冠的形成过程. 本研究基于二氧化硅胶体晶体薄膜和反射干涉光谱法, 研究了三种代表性血液蛋白质在二氧化硅纳米粒子表面的蛋白冠形成过程, 结果表明这三种蛋白具有不同的蛋白冠形成过程及参数; 研究了人血清白蛋白在三种表面曲率的二氧化硅表面的蛋白冠形成过程, 结果表明曲率越大时, 蛋白冠形成速率越快, 厚度越大. 以血浆和全血样品为生物环境开展蛋白冠形成过程研究, 结果表明本研究的监测方法可以直接用于血浆和全血在纳米粒子表面蛋白冠的形成过程监测, 为纳米材料与生物分子的相互作用研究提供了一种简单可靠的评价技术.  相似文献   
72.
General-purpose plastics with high strength and toughness have been in great demand for structural engineering applications. To achieve the reinforcement and broaden the application scope of high-density polyethylene(HDPE), multi-flow vibration injection molding(MFVIM) and ultrahigh molecular weight polyethylene(UHMWPE) are synergistically employed in this work. Herein, the MFVIM has better shear layer control ability and higher fabrication advantage for complex parts than other analogous novel injection molding technologies reported.The reinforcing effect of various filling times and UHMWPE contents as well as the corresponding microstructure evolution are investigated.When 5 wt% UHMWPE is added, MFVIM process with six flow times thickens the shear layer to the whole thickness. The tensile strength and modulus increase to 2.14 and 1.39 times, respectively, compared to neat HDPE on the premise of remaining 70% impact strength. Structural characterizations indicate that the enhancement is attributed to the improvement of shish-kebab content and lamellae compactness, as well as related to the corresponding size distributions of undissolved UHMWPE particles. This novel injection molding technology with great industrial prospects provides a facile and effective strategy to broaden the engineering applications of HDPE materials. Besides, excessive UHMWPE may impair the synergistic enhancement effect, which is also reasonably explained.  相似文献   
73.
Owing to the limited availability of suitable precursors for vapor phase deposition of rare-earth containing thin-film materials, new or improved precursors are sought after. In this study, we explored new precursors for atomic layer deposition (ALD) of cerium (Ce) and ytterbium (Yb) containing thin films. A series of homoleptic tris-guanidinate and tris-amidinate complexes of cerium (Ce) and ytterbium (Yb) were synthesized and thoroughly characterized. The C-substituents on the N-C-N backbone (Me, NMe2, NEt2, where Me=methyl, Et=ethyl) and the N-substituents from symmetrical iso-propyl (iPr) to asymmetrical tertiary-butyl (tBu) and Et were systematically varied to study the influence of the substituents on the physicochemical properties of the resulting compounds. Single crystal structures of [Ce(dpdmg)3] 1 and [Yb(dpdmg)3] 6 (dpdmg=N,N'-diisopropyl-2-dimethylamido-guanidinate) highlight a monomeric nature in the solid-state with a distorted trigonal prismatic geometry. The thermogravimetric analysis shows that the complexes are volatile and emphasize that increasing asymmetry in the complexes lowers their melting points while reducing their thermal stability. Density functional theory (DFT) was used to study the reactivity of amidinates and guanidinates of Ce and Yb complexes towards oxygen (O2) and water (H2O). Signified by the DFT calculations, the guanidinates show an increased reactivity toward water compared to the amidinate complexes. Furthermore, the Ce complexes are more reactive compared to the Yb complexes, indicating even a reactivity towards oxygen potentially exploitable for ALD purposes. As a representative precursor, the highly reactive [Ce(dpdmg)3] 1 was used for proof-of-principle ALD depositions of CeO2 thin films using water as co-reactant. The self-limited ALD growth process could be confirmed at 160 °C with polycrystalline cubic CeO2 films formed on Si(100) substrates. This study confirms that moving towards nitrogen-coordinated rare-earth complexes bearing the guanidinate and amidinate ligands can indeed be very appealing in terms of new precursors for ALD of rare earth based materials.  相似文献   
74.
The conversion of chemical feedstock materials into high value-added products accompanied with dehydrogenation is of great value in the chemical industry.However,the catalytic dehydrogenation reaction is inhibited by a limited number of expensive noble metal catalysts and lacks understanding of dehydrogenation mechanism.Here,we report the use of heterogeneous non-noble metal iron nanoparticles(NPs) incorporated mesoporous nitrogen-doped carbon to investigate the dehydrogenation mechanism based on experiment observation and density functional theory(DFT) method.Fe NPs catalyst displays excellent performance in the dehydrogenation of 1,2,3,4-tetrahydroquinoline(THQ)with 100% selectivity and 100% conversion for 10-12 h at room temperature.The calculated adsorption energy implies that THQ prefers to adsorb on Fe NPs as compared with absence of Fe NPs.What is more,the energy barrier of transition state is relatively low,illustrating the dehydrogenation is feasible.This work provides an atomic scale mechanism guidance for the catalytic dehydrogenation reaction and points out the direction for the design of new catalysts.  相似文献   
75.
Morphologically and dimensionally controlled growth of Ag nanocrystals has long been plagued by surfactants or capping agents that complicate downstream applications, unstable Ag salts that impaired the reproducibility, and multistep seed injection that is troublesome and time-consuming. Here, we report a one-pot electro-chemical method to fast (∼2 min) produce Ag nanoparticles from commercial bulk Ag materials in a nitric acid solution, eliminating any need for surfactants or capping agents. Their size can be easily manipulated in an unprecedentedly wide range from 35 to 660 nm. Furthermore, the Ag nanoparticles are directly grown on the Ag substrate, highly desirable for promising applications such as catalysis and plasmonics. The mechanistic studies reveal that the concentration of Ag+ in the diffusion layer nearby the surface, controlled by the magnitude and duration of voltage, is critical in governing the nanoparticle formation (<1.3 mM) and its dimensional adjustability.  相似文献   
76.
As the strongest triple bond in nature, the N≡N triple bond activation has always been a challenging project in chemistry. On the other hand, since the award of the Nobel Prize in Chemistry in 1950, the Diels-Alder reaction has served as a powerful and widely applied tool in the synthesis of natural products and new materials. However, the application of the Diels-Alder reaction to dinitrogen activation remains less developed. Here we first demonstrate that a transition-metal-involved [4+2] Diels-Alder cycloaddition reaction could be used to activate dinitrogen without an additional reductant by density functional theory calculations. Further study reveals that such a dinitrogen activation by 1-metalla-1,3-dienes screened out from a series of transition metal complexes (38 species) according to the effects of metal center, ligand, and substituents can become favorable both thermodynamically (with an exergonicity of 28.2 kcal mol−1) and kinetically (with an activation energy as low as 13.8 kcal mol−1). Our findings highlight an important application of the Diels-Alder reaction in dinitrogen activation, inviting experimental chemists’ verification.  相似文献   
77.
With impressive progress in carbon capture and renewable energy, carbon dioxide (CO2) conversion into useful chemicals has become a potential tool against climate change. Electrochemical CO2 conversion into C2 products (ethylene and ethanol) is an especially economically promising approach and an active research area. Nonetheless, catalyst layer design for CO2 conversion is challenging because of the complex CO2-to-C2 reaction pathways. In this review, we highlight key ideas in catalyst layer design for CO2 conversion to C2 in the past few years. We identify three fundamental principles to control catalyst selectivity—local CO2 and CO concentration, local pH, and intermediate–catalyst interaction. To achieve these goals, we introduce design strategies for both catalytic materials and overall catalyst layer morphology.  相似文献   
78.
Chloride is a crucial anion for various analytical applications from biological to environmental applications. In order to measure the chloride ion concentration, a measurement system is needed which can detect this concentration for prolonged times reliably. Chronopotentiometry is a technique which does not need a long term stable reference electrode and is therefore very suitable for prolonged ion concentration measurements. As the used electrode might be fouled by reaction products, this work focuses on a chronopotentiometric approach with a separated sensing electrode (sensor) and actuating electrode (actuator). Both actuation and sensor electrode are made of Ag/AgCl. A constant current is applied to the actuator and will start the reaction between Ag and Clˉ, while the resulting Clˉ ion concentration change is observed through the sensor, which is placed close to the actuator. The time it takes to locally deplete the Clˉ ions is called transition time. Experiments were performed to verify the feasibility of this approach. The performed experiments show that the sensor detects the local concentration changes resulting from the current applied to the actuator. A linear relation between the Clˉ ion concentration and the square root of the transition time was observed, just as was predicted by theory. The calibration curves for different chips showed that both a larger sensor and a larger distance between sensor and actuator resulted in a larger time delay between the transition time detected at the actuator and the sensor.  相似文献   
79.
Microfabricated silica thin layer chromatography (TLC) plates have previously been prepared on patterned carbon nanotube forests. The high temperatures used in their fabrication reduce the number of hydroxyl groups on their surfaces. Fortunately, silica can be rehydroxylated. In diffuse reflectance infrared Fourier transform spectroscopy (DRIFT), a silanol peak below 3740 cm?1 indicates a well‐hydroxylated silica surface that is fit for chromatography. Hydroxylations of our materials with HF are so effective that it is not possible to discern the position of this peak. In contrast, this signal is discernable when the plates are treated with NH4OH. To find a more convenient method for studying the surfaces of TLC plates, time‐of‐flight secondary ion mass spectroscopy (ToF‐SIMS) was considered. ToF‐SIMS is advantageous because multiple microfabricated TLC plates must be scraped to obtain enough silica for one DRIFT analysis, while static SIMS can be performed on very small regions (500 × 500 µm2 or less) of individual plates. Ratios of the SiOH+ and Si+ ToF‐SIMS signals for microfabricated TLC plates correlated well with ~3740 cm?1 silanol peaks from DRIFT. Thus, SIMS allows direct analysis of all of our treated and untreated plates, including those hydroxylated with HF. The best hydroxylation condition for HF, which was better than any studied for NH4OH, was around 150 ppm at room temperature. The best hydroxylation condition for NH4OH was 50 °C for 72 h. ToF‐SIMS versus DRIFT results of commercial TLC plates were also obtained and evaluated. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
80.
石墨烯具有高导电性、高韧度、高强度、超大比表面积等特点,在电子、航天工业、新能源、新材料等领域有广泛应用。对石墨烯层数测量方法的研究有助于深入理解石墨烯性能与微观结构之间的关系。本文着重阐述了包括光学显微镜、拉曼光谱、原子力显微镜和透射电镜等测量石墨烯层数的方法,同时比较了各种测量方法的优点及局限性,并指出石墨烯层数的测量方法还有待进一步完善。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号